Reduction of symmetric semidefinite programs using the regular *-representation

نویسندگان

  • Etienne de Klerk
  • Dmitrii V. Pasechnik
  • Alexander Schrijver
چکیده

Abstract. We consider semidefinite programming problems on which a permutation group is acting. We describe a general technique to reduce the size of such problems, exploiting the symmetry. The technique is based on a low-order matrix ∗-representation of the commutant (centralizer ring) of the matrix algebra generated by the permutation matrices. We apply it to extending a method of de Klerk et al. that gives a semidefinite programming lower bound to the crossing number of complete bipartite graphs. It implies that cr(K8,n) ≥ 2.9299n −6n, cr(K9,n) ≥ 3.8676n 2 − 8n, and (for any m ≥ 9)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Lovász θ-number of almost regular graphs with application to Erdős–Rényi graphs

We consider k-regular graphs with loops, and study the Lovász θ-numbers and Schrijver θ′–numbers of the graphs that result when the loop edges are removed. We show that the θ-number dominates a recent eigenvalue upper bound on the stability number due to Godsil and Newman [C.D. Godsil and M.W. Newman. Eigenvalue bounds for independent sets. Journal of Combinatorial Theory B, to appear]. As an a...

متن کامل

Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones

We establish polynomial-time convergence of infeasible-interior-point methods for conic programs over symmetric cones using a wide neighborhood of the central path. The convergence is shown for a commutative family of search directions used in Schmieta and Alizadeh [9]. These conic programs include linear and semidefinite programs. This extends the work of Rangarajan and Todd [8], which establi...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

On Structured Semidefinite Programs for the Control of Symmetric Systems

In this paper we show how the symmetry present in many linear systems can be exploited to significantly reduce the computational effort required for controller synthesis. This approach may be applied when controller design specifications are expressible as a semidefinite program. In particular, when the overall system description is invariant under unitary coordinate transformations of the stat...

متن کامل

Structured semidefinite programs for the control of symmetric systems

In this paper we show how the symmetry present in many linear systems can be exploited to significantly reduce the computational effort required for controller synthesis. This approach may be applied when controller design specifications are expressible via semidefinite programming. In particular, when the overall system description is invariant under unitary coordinate transformations of the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2007